

INTERFACE CHARACTERISTICS OF ALUMINUM-COPPER OBTAINED BY EXPLOSIVE WELDING

<u>R. Mendes¹</u>, G. Barreto¹, J. Ribeiro¹, A. Loureiro², and I. Plaksin¹

¹**ADAI**– Association for the Development of Industrial Aerodynamics ²**CEMUC**[®] - Centre of Materials Engineering

Department of Mechanical Engineering - University of Coimbra – Portugal

XI International Symposium on Explosive Production of New Materials: Science, Technology, Business and Innovations; 25-30 May 2014, Krakow, Poland

Content

- Objective
- Explosive characteristics
- Results
- Conclusions

- 1. Preparation of Cu/Al full lap joint by explosive welding.
- 2. Study of the explosive nature and explosive/flyer mass ratio on the characteristics of the bonding interface.

EPNM, 2014

Energetic Material

Emulsion Matrix	EPS (%)	HGMB (%)	ANFO (%)	ρ ₀ (g/cm³)
85	-	15	-	0.76
98	1.2	-	-	0.90
20	-	-	80	0.82
-	-	-	100	0.80

U

Long charge teste- Detonation velocity

Detonation velocity

Detonation velocity vs Explosive/flyer mass ratio (R)

U

Impact velocity

• Impact velocity vs Explosive/flyer mass ratio: Vp(R)

U

.

Copper surface in contact with explosive-I

EX + 15% HGMB

EX + 1.2% EPS

U

Copper surface in contact with explosive-II

ANFO + 20% EX

ANFO

U

Effect of Ejecta-driven detonation cells on the boundary layer of copper confinement

→ Spatially-resolved registration of the DRZ-localizations was performed with application of 96channel optical analyzer MCOA-UC.

 Bright spots are corresponding to high-Temperature localizations (visible and near-IR radiation);
Reaction localizations produce significant perturbations in the boundary layer of copperconfinement & PBX-driven liner (recovered copper-confinement is shown in the left image)

Plaksin et al. 2001, 2003, 2005

C

 PBX_{st} (a), $HMX_{L}/Water$ (b) and $HMX_{F}/Water$ (c). 40ns

Energetic Material: Detonation Front

Results: Interfacial waves

EX+15%HGMB

EX+1.2%EPS

Results: Interfacial waves

ANFO + 20%EX

Altito

ANFO

U

Wave amplitude vs R

U

•

Wavelength vs R

U

EPNM, 2014

Results: Intermetallics compounds

SEM and **EDS** analysis to interface zone have shown the formation of intermetallics compounds.

Thickness of intermetallic compounds band increases with increase of R

EX+15% HGMB (zone 1)

• Any known phase.

EX+15% HGMB (zone 2) EW2

 Atomic composition close to CuAl2, (Hang et. al., 2008)

Results: Intermetallics compounds

Results: Tensile tests

Deformação EW2_20_3

Tensile Tests of the welds revealed that plastic deformation ocurrs in the Copper material for specimem prepared with EX+15%HGMB and with Ex+1.2% EPS.

The joint was able to tranfer load, similar to an overlap weld.

Conclusions

- The increase of R leads to the formation of bigger intermetallic zones with the formation of CuAl₂ and CuAl.
- Tensile Strength of Al-Cu joint laps is higher than tensile strength of Cu.
- Fluctuations in detonation flow are a function of the explosive nature. Local fluctuations in detonation flow are transmitted to the metal surface, in contact with explosive, inducing on it a crater pattern that is function of the explosive nature.
- Beyond the parameters (Vp, sod, R) that influence the wavy pattern, the local fluctuations in detonation flow play an important role on the characteristics of the interfacial waves.

Thank you for your attention

Ricardo Mendes

ricardo.mendes@dem.uc.pt

U

D

Acknowledgments

The authors would like to thank to the Portuguese DoD - EDA Project "Reduced Sensitivity Energetic Materials for

Higher Performance of Inertial Confinement" and to LEDAP -Lab. Energetics and Detonics